
ar
X

iv
:a

st
ro

-p
h/

02
07

66
4 

v2
   

11
 J

un
 2

00
3

Mon. Not. R. Astron. Soc. 000, 000–000 (0000) Printed 8 July 2004 (MN LATEX style file v1.4)

Accepted for publication in Monthly Notices

Stable clustering, the halo model and nonlinear

cosmological power spectra

R. E. Smith1,2
⋆

, J. A. Peacock1, A. Jenkins3, S. D. M. White4, C. S. Frenk3,
F. R. Pearce2, P. A. Thomas5, G. Efstathiou6 and H. M. P. Couchman7

(The Virgo Consortium)

1 Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, U.K.
2 School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD
3 Department of Physics, University of Durham, South Road, Durham, DH1 3LE
4 Max-Planck-Institut für Astrophysik, Garching, D-85740 München, Germany
5 Astronomy Centre, CPES, University of Sussex, Falmer, Brighton, BN1 9QH
6 Institute of Astronomy, Madingley Road, Cambridge
7 Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada

8 July 2004

ABSTRACT

We present the results of a large library of cosmological N -body simulations, using
power-law initial spectra. The nonlinear evolution of the matter power spectra is com-
pared with the predictions of existing analytic scaling formulae based on the work
of Hamilton et al. The scaling approach has assumed that highly nonlinear struc-
tures obey ‘stable clustering’ and are frozen in proper coordinates. Our results show
that, when transformed under the self-similarity scaling, the scale-free spectra de-
fine a nonlinear locus that is clearly shallower than would be required under stable
clustering. Furthermore, the small-scale nonlinear power increases as both the power
spectrum index n and the density parameter Ω decrease, and this evolution is not
well accounted for by the previous scaling formulae. This breakdown of stable clus-
tering can be understood as resulting from the modification of dark-matter haloes by
continuing mergers. These effects are naturally included in the analytic ‘halo model’
for nonlinear structure; we use this approach to fit both our scale-free results and
also our previous CDM data. This method is more accurate than the commonly-
used Peacock–Dodds formula and should be applicable to more general power spec-
tra. Code to evaluate nonlinear power spectra using this method is available from
http://as1.chem.nottingham.ac.uk/∼res/software.html. Following publication,
we will make the power-law simulation data publically available through the Virgo
website http://www.mpa-garching.mpg.de/Virgo/.

Key words: Cosmology: theory – large scale structure of Universe – Galaxies: grav-
itational clustering

1 INTRODUCTION

In the current cosmological paradigm, structures grow
through the gravitational instability of collisionless dark
matter fluctuations. This occurs in a hierarchical way, with
small-scale perturbations collapsing first and large-scale per-
turbations later. One of the most direct manifestations of
this nonlinear process is the evolution of the power spectrum

⋆ E-mail: robert.e.smith@nottingham.ac.uk

of the mass, P (k), where k is the wavenumber of a given
Fourier mode. Understanding this evolution of the power
spectrum is one of the key problems in structure formation,
being directly related to the abundance and clustering of
galaxy systems as a function of mass and redshift. If the
processes that contribute to the evolution can be captured
in an accurate analytic model, this opens the way to us-
ing observations of the nonlinear mass distribution (from
large-scale galaxy clustering or weak gravitational lensing)
in order to recover the primordial spectrum of fluctuations.
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2 Smith et al.

One of the most influential attempts at such an analytic
description of clustering evolution was the ‘scaling ansatz’
of Hamilton et al. (1991; HKLM), which is described in Sec-
tion 2. This scaling procedure was generalized to models
with Ω 6= 1 and given a more accurate N-body calibration
by Peacock & Dodds (1996; PD96). HKLM assumed that a
nonlinear collapsed object would decouple from the global
expansion of the Universe to form an isolated system in virial
equilibrium – the ‘stable clustering’ hypothesis of Davis &
Peebles (1977). This assumption has been widely adopted,
and yet it appears somewhat inconsistent with hierarchical
models – in which objects are continuously accreting mass
and growing through mergers. Indeed, the validity of stable
clustering has been increasingly questioned in recent years
(e.g. Yano & Gouda 2000; Caldwell et al. 2001). One of our
aims in this paper is thus to establish whether stable clus-
tering is relevant for understanding the small-scale evolution
of the power spectrum.

We therefore explore the gravitational instability of
dark matter fluctuations through a series of large N-body
simulations of clustering from power-law initial conditions,
with

P (k) ∝ kn. (1)

We consider both Ω = 1 models, in which the evolution
can obey a similarity solution, and also low-density models
with and without a cosmological constant. We demonstrate
that the resolution of the simulations is sufficient to mea-
sure the power well into the regime at which the HKLM
procedure predicts a well-defined slope for the power spec-
trum determined by stable clustering. In practice, we find
that the power spectra are generally shallower than would
be required for clustering to be stable on small scales. Fur-
thermore, as both n and Ω decrease, the amplitude of the
small-scale spectrum increases in a manner that is not well
described by any of the previous fitting formulae. In light of
these results, a new method for predicting nonlinear spectra
is proposed. This method is based on the ‘halo model’ (e.g.
Seljak 2000; Peacock & Smith 2000), which does not assume
stable clustering. This allows us to fit our data and also the
cold dark matter (CDM) data of Jenkins et al. (1998; J98)
with a high degree of accuracy.

The paper is structured as follows. In Section 2 we pro-
vide a brief overview of the theoretical understanding of
nonlinear evolution. In particular, a description of the stable
clustering hypothesis, the nonlinear HKLM scaling relations
and the halo model are given, as these ideas are central to
this paper. We also discuss the scale-free models and their
self-similarity properties. In Section 3 we describe the nu-
merical simulations and we provide a visual comparison of
the growth of structure in the different scale-free models.
In Section 4 we describe an improved method for measur-
ing power spectra and in Section 5 we present the power
spectra data and contrast them with the current nonlinear
fitting formulae. In Section 6 we describe a new approach
to fitting power spectra and its generalization to CDM, and
then compare our new globally optimized formula with the
results from Section 5 and also the CDM data. Finally, in
Section 7 we draw our conclusions and discuss our findings
in a wider context.

2 DESCRIPTION OF NONLINEAR

EVOLUTION

2.1 From linear theory to stable clustering

The mass density field, at comoving position x and time t,
is defined as

ρ(x, t) = ρ̄(t) [1 + δ(x, t)] , (2)

where δ is the density fluctuation about the homogeneous
background ρ̄. The 2-point auto-correlation function of the
density field is

ξ(r) = 〈δ(x)δ(x + r)〉 , (3)

which in three dimensions is related to the dimensionless
power spectrum ∆2(k) through the integral relation

ξ(r) =

∫

∆2(k)
sin kr

kr

dk

k
, (4)

where we have assumed that the field is isotropic and ho-
mogeneous. ∆2 is the contribution to the fractional density
variance per unit ln k. In the convention of Peebles (1980),
this is

∆2(k) ≡
dσ2

d ln k
=

V

(2π)3
4πk3P (k) , (5)

V being a normalization volume.
When δ(x, t) ≪ 1 the temporal evolution of the fluctu-

ation is separable and the field scales as

δ(x, t) =
D(t)

D(t0)
δ(x, t0) , (6)

where D(t) is a growth factor whose exact form can be deter-
mined from linear theory. As δ(x, t) → 1, increasingly higher
orders of perturbation theory are required (see Bernardeau
et al. 2001 for a thorough review). Eventually, perturbation
theory fails and numerical methods must be applied. Even
so, it was proposed (Peebles 1974a; Davis & Peebles 1977;
Peebles 1980) that clustering in the very nonlinear regime
might be understood by assuming that regions of high den-
sity contrast undergo virialization and subsequently main-
tain a fixed proper density. The correlation function for a
population of such systems would then simply evolve accord-
ing to ξ(r, t) ∝ 1/ρ̄ ∝ a3, where r is a proper distance. This
evolution was termed ‘stable clustering’. Peebles went on to
show that if the initial power spectrum was a pure power-
law in k with spectral index n, P (k) ∝ kn, and if Ω = 1,
then under the stable clustering hypothesis, the slope of the
nonlinear correlation function would be directly related to
the spectral index through the relation

ξ(r, t) ∝ r−γ ; γ =
3(3 + n)

5 + n
. (7)

Hence, if stable clustering applies, then the nonlinear density
field retains some memory of its initial configuration, and in
principle can be used to measure the primordial spectrum
of fluctuations.

2.2 The HKLM scaling relations

HKLM developed a method for interpolating between linear
theory on large scales and the nonlinear predictions of the
stable clustering hypothesis on small scales. They showed
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Stable clustering, the halo model and nonlinear cosmological power spectra 3

that the nonlinear volume averaged two-point correlation
function,

ξ̄(x) ≡
3

x3

∫ x

0

y2ξ(y) dy , (8)

measured from the scale-free simulations of Efstathiou et al.
(1988), could be parameterized by a simple function of the
linear correlation function, provided that nonlinear evolu-
tion were to induce a change of scale.

The transformation of scales follows from an intuitive
continuity argument, based upon the ‘spherical top-hat’
model. Let the mass enclosed within a spherical overden-
sity in the initial stages of evolution be m0 (< ℓ) and its
mass at some later time be m (< x). As each shell evolves,
it will reach a maximum expansion point, turn around and
collapse. If there is no shell crossing, then mass is conserved
and

m0 (< ℓ) =
4

3
πρ (< ℓ) ℓ3 =

4

3
πρ (< x) x3 = m (< x)) . (9)

The argument now identifies 1 + ξ̄ as the factor by which
the density is enhanced relative to the mean (Peebles 1980).
Provided ξ̄L ≪ 1, this implies the scaling

x3
[

1 + ξ̄NL(x, t)
]

= ℓ3 , (10)

where x represents a nonlinear scale and ℓ a Lagrangian
scale.

Finally, after this rescaling, the nonlinear correlations
are taken to be a universal function of the linear ones:

ξ̄NL(x, t) = f
[

ξ̄L(ℓ, t)
]

. (11)

HKLM then assumed that the functional form of f(y) could
be determined analytically in two regimes: in the linear
regime, where ξ̄L ≪ 1, f(y) = y ; when ξ̄L ≫ 1, galaxy
groups would exhibit ‘stable clustering’, for which ∆2

NL ∝ a3

and since ∆2
L ∝ a2, this implied that f(y) ∝ y3/2. The

interpolation between these two regimes, where y ∼ 1,
was determined empirically by HKLM, by comparison with
numerical simulation. However, Padmanabhan (1996) pro-
posed that the quasilinear regime could also be understood
analytically. He considered the point at which a spheri-
cal perturbation would reach its maximum radius, which
is xmax = l/δL ∝ l/ξ̄L, according to the spherical model.
Padmanabhan thus conjectured that

ξ̄Q ∝ ρ(< xmax) ∝
m

x3
max

∝
m0

x3
max

∝
l3

l3/ξ̄3
L

∝ ξ̄3
L (12)

(in effect rediscovering the argument of Gott & Rees 1975).
Although useful heuristically in explaining why the quasilin-
ear regime of fNL should be steeper than either the linear or
nonlinear regime, it is not clear that this expression matches
the observed quasilinear slope very well (Padmanabhan et
al. 1996; Jain1997). We investigate this further in Section 5.

HKLM’s nonlinear scaling argument was further devel-
oped by Peacock & Dodds (1994; PD94), who proposed that
the scaling ansatz could be used for predicting power spectra
by simply replacing ξ̄ → ∆2 and letting the linear and non-
linear scales represent linear and nonlinear wavenumbers:
ℓ = k−1

L and x = k−1
NL. This suggested the formalism

∆2
NL(kNL) = fNL

[

∆2
L(kL)

]

;

kNL =
[

1 + ∆2
NL(kNL)

]1/3
kL. (13)

The accuracy of the HKLM and PD94 scaling formulae
was tested by Jain, Mo & White (1995; JMW95). They per-
formed a series of simulations with 1003 particles as opposed
to the previous 323, and discovered that the nonlinear lo-
cus described by the data exhibited a strong n-dependence.
The HKLM and PD94 functions underestimated the mea-
sured correlation functions and power spectra, the fits being
worse for more negative n. JMW95 then showed that this
n-dependence could be removed by a simple scaling of the
variables in the log ξ̄NL(x, t)− log ξ̄L(ℓ, t) plane. In order for
the model to be applied to curved spectra, such as the CDM
model, an effective spectral index neff was required. JMW95
proposed that the appropriate n should be given by

neff =
d ln P (k)

d ln k

∣

∣

∣

∣

k=1/Rc

, (14)

where Rc is the scale on which the variance of the density
field is unity. This showed the right response with scale, and
described their data to a precision of 15 − 20%, which was
adequate given the scatter within the simulations.

Further refinements were again made by Peacock &
Dodds (1996; PD96), who used a large ensemble of 803 par-
ticle simulations to investigate the n-dependence and the
response of the clustering to low density universes: Ω < 1
and Ω + Λ = 1, where Ω and Λ are the densities associated
with matter and the cosmological constant, relative to the
Einstein–de Sitter universe. PD96 concluded that nonlinear
effects tend to increase the power on small scales for spectra
with more negative spectral indices and for lower densities.
PD96 also produced a fitting formula which modelled their
data, and also CDM-like spectra through defining an effec-
tive spectral index that changed with each wavenumber

neff(kL) =
d ln P

d ln k
(k = kL/2) . (15)

Subsequently, high resolution numerical simulations of
CDM-like universes have shown that the PD96 formulae
match the observed nonlinear power spectra closely (Mo,
Jing & Börner 1997; J98; Smith et al. 1998), but with some
significant deviations. Jain & Bertschinger (1998) found a
larger discrepancy in their 2563 P3M simulation of cluster-
ing from an n = −2 power spectrum, with both the for-
mula of JMW95 and PD96 underestimating the quasi-linear
power. They also claimed that their results for highly non-
linear clustering were in accordance with stable clustering,
although finite volume effects have drawn their results into
question (Ma & Fry 2000a; Scoccimarro et al. 2001). We
discuss this issue in further detail in Section 3.3. Recent
attempts to constrain cosmological parameters from weak
gravitational lensing studies, that require as input the non-
linear matter power spectrum, have also uncovered deficien-
cies in the PD96 formula, with the poorest performance for
the Ω = 1 τCDM model (Van Waerbeke et al. 2001).

2.3 A dark matter halo approach

More recently an entirely different analytical model for non-
linear gravitational clustering has emerged: the ‘halo model’.
In this model, the density field is decomposed into a distri-
bution of clumps of matter with some density profile. This
basic idea goes back to Neyman & Scott (1952), and recurs
in more modern form in (Scherrer & Bertschinger 1991).
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4 Smith et al.

Following the realization that galaxy bias was strongly in-
fluenced by the number of galaxies in a halo (Jing, Mo &
Börner 1998; Benson et al. 2000), a number of authors (Sel-
jak 2000; Peacock & Smith 2000; Ma & Fry 2000a; Scoc-
cimarro et al. 2001) resurrected the Neyman–Scott model
with a modern mass function for dark haloes (Press &
Schechter 1974; Sheth & Tormen 1999; Jenkins et al. 2001),
plus realistic density profiles (Navarro, Frenk & White 1996;
Navarro, Frenk & White 1997; Moore et al. 1999), and a
mass-dependent galaxy ‘occupation number’. The inclusion
of bias is an attractive aspect of the halo model, but we will
not be concerned with this here.

In the halo model, the large-scale clustering of the mass
arises through the correlations between different haloes. Pre-
scriptions for this clustering were given by Mo & White
(1996); Mo, Jing & White (1997); Sheth & Lemson (1999);
Sheth & Tormen (1999); Sheth, Mo & Tormen (2000), and
a recent example of their effectiveness is shown clearly in
Colberg et al. (2000). On small scales, the correlations are
derived purely from the convolution of the density profile of
the halo with itself (Peebles 1974b; McClelland & Silk 1977;
Sheth & Jain 1997). This model thus makes strong predic-
tions about the clustering on small scales. Unless the den-
sity profile and mass function obey a specific relationship,
the merger-driven evolution of the mass function means that
stable clustering approximation does not hold true (Yano &
Gouda 2000; Ma & Fry 2000b). For a more detailed review
of the halo model and its applications we refer the reader to
Sheth & Cooray (2002).

2.4 Scale-free models

An elegant way to study nonlinear evolution is to simulate
‘scale free’ universes that have no inbuilt characteristic phys-
ical length scales. We follow Efstathiou et al. (1988) and
require two conditions to be satisfied:

(1) The initial power spectrum of fluctuations is a power
law:

P (k) = Akn; 1 < n < −3. (16)

(2) The evolution of the scale factor for the cosmological
model power law in time:

a(t) ∝ tα . (17)

The most interesting cosmological model that satisfies these
constraints is the Einstein–de Sitter model: α = 2/3, Ω = 1
and Λ = 0, so that the linear-theory growth of the power
spectrum is P (k) ∝ a2.

In this case, the only natural way to define a charac-
teristic length is through the scale at which the fluctuations
become nonlinear. The variance of the linear density field,
smoothed on some comoving length scale x, is

σ2(x, a) =

∫

∆2
L(k, a) |W (kx)|2

dk

k
, (18)

where W is the filter function. If we assume ∆2(a, k) ∝
a2k3+n, and that the filter causes a cut-off at some high
spatial frequency kc ∼ 1/x, we find

σ2(kc, a) ∝

∫ kc

0

a2kn+2dk ∝ a2x−(3+n)
c . (19)

We now define a nonlinear wavenumber, kNL such that
σ2(kNL, a) = 1, so that

kNL(a) ∝ a−2/(3+n). (20)

Under this transformation, it is plausible that the statistics
of gravitational clustering will be expressible as a similarity
solution:

P (k, a) = P̃ (k/kNL) (21)

(Davis & Peebles 1977; Peebles 1980; Efstathiou et al. 1988;
Jain & Berchinger 1998). No formal proof of the similarity
solution exists, and this conjecture is something that must
be tested empirically via simulation. We refer the reader
to the work of Colombi, Bouchet & Hernquist (1996) for
further discussion of the range of spectral indices for which
self-similarity should be valid.

In practice, we present good evidence in this paper that
the power spectrum does scale in this way for 0 ≥ n ≥ −2.
Spectra outside this range are harder to simulate and so
not yet tested. We may however anticipate that only cer-
tain initial spectra will evolve in a self-similar fashion. For
n ≥ 1, the amplitude of gravitational potential fluctuations
diverges on small scales, so one might question the idea
of a hierarchy that grows via the merger and disruption
of small systems. However, this argument is not definitive,
since the similarity solutions generally depart from P ∝ kn

for k > kNL. We seek a function which is of this power-
law form for k < kNL and some unknown form at larger k,
and which evolves in a self similar fashion. In practice, this
function is found by starting with exact power-law initial
conditions, and hoping that the simulation will relax into
the desired self-similar form as it evolves. The existence of
a self-similar solution with n > 1 on large scales therefore
remains an open question. On large scales, the peculiar ve-
locity field diverges if n ≤ −1, so more negative indices may
seem problematic. This does not seem to be a problem in
practice, probably for the reasons discussed by Bernardeau
et al. (2001): the divergent modes of very long wavelength re-
ally just cause a translation, and Galilean invariance means
that the statistics of smaller-scale clustering are unaffected.
Certainly, well-defined results can be obtained from pertur-
bation theory for n more negative than −1, so the only clear
limit is n ≤ −3, for which the whole idea of asymptotic ho-
mogeneity breaks down.

If we can find initial spectra for which self-similarity ap-
plies, this is an extremely useful means of assessing the reli-
ability of N-body results. Also, over limited ranges of mass,
the scale-free models correspond directly to more physically
motivated models such as CDM, whose spectral index is a
slow function of scale. As we shall show, an analytic de-
scription of nonlinear evolution in the scale-free case leads
quite directly to a method that can also give an accurate
description of nonlinear evolution in CDM models.

3 THE NUMERICAL SIMULATIONS

We have produced a large library of N-body simulations
with N = 2563 particles. We considered Einstein–de Sitter
(Ω = 1) models, and also low-density open and flat Λ ge-
ometries. The spectral indices that have been simulated are

c© 0000 RAS, MNRAS 000, 000–000



Stable clustering, the halo model and nonlinear cosmological power spectra 5

Table 1. Parameters of the 2563 particle, scale-free simulations. The r1 simulations represent glass initial conditions and r2 simulations
are grid starts.

simulation ǫ/L ∆2(kb, a = 1) ainitial afinal timesteps energy error output values of a

n = −2 r1 0.00025 0.133 0.025 0.62 831 0.04 % 0.025, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.62
n = −2 r2 0.00025 0.133 0.025 0.55 904 0.04 % 0.025, 0.1, 0.2, 0.3, 0.4, 0.5, 0.55
n = −1.5 r1 0.00023 0.046 0.010 0.96 991 0.16 % 0.01, 0.25, 0.315, 0.4, 0.5, 0.63, 0.794, 0.96
n = −1.5 r2 0.00023 0.046 0.010 1.00 915 0.16 % 0.01, 0.25, 0.315, 0.4, 0.5, 0.63, 0.794, 1.0
n = −1 r1 0.00023 0.017 0.010 0.83 991 0.31 % 0.01, 0.25, 0.315, 0.4, 0.5, 0.63, 0.794, 0.83
n = −1 r2 0.00023 0.017 0.010 1.00 815 0.31 % 0.01, 0.25, 0.315, 0.4, 0.5, 0.63, 0.794, 1.0
n = 0 r1 0.00025 0.003 0.025 0.66 1443 0.50 % 0.025, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.66
n = 0 r2 0.00025 0.003 0.025 0.50 1239 0.50 % 0.025, 0.1, 0.2, 0.3, 0.4, 0.5

n = −2, −1.5, −1 and 0 and two realizations of each spec-
tral index were carried out. The simulations were executed
on either 128 or 64 processors of the Edinburgh Cray T3E
supercomputer, using the parallelized P3M ‘shmem’ version
of HYDRA (Macfarland et al. 1998; Couchman, Thomas &
Pearce 1995; Pearce & Couchman 1997), in purely collision-
less dark matter mode.

The large-scale force calculation in HYDRA used a 5123

Fourier mesh, supplemented by direct summation of close
pairs to achieve the desire total interparticle force. As usual,
this is softened on small scales in order to suppress two-body
encounters. In HYDRA, the transition from pure Newtonian
to constant force is achieved using a ‘spline-kernel softening’;
with this method, the interparticle forces become precisely
Newtonian after 2.34 times the softening length. In all cases,
we adopted a comoving softening length that is simply a
fraction f of the interparticle spacing

ǫ = fL/N1/3 , (22)

where L is the side of the simulation box. We used f ≃ 0.064,
which is slightly smaller than the late-time value used by
Efstathiou et al. (1988) and the small-box calculations of
J98 who used f ≃ 0.1. However, it is slightly larger than
the values used by Jain & Bertschinger (1998) who used an
effective value of f = 0.05, and also the value chosen by
J98 for their big-box simulations, f ≃ 0.038. We ran a few
test simulations in which f was varied, and we believe that
the results quoted here are not sensitive to the exact value
adopted.

For the initial particle load, a combination of ‘quiet’
starts and ‘glass’ configurations was used. The quiet starts
were produced by simply placing particles onto a uniform
grid with spacing L/N1/3. This method gives no contribu-
tion to the power spectrum from particle placement except
on scales of the order half a mesh spacing (See Section 4).
However, grid initial conditions may lead to non-physical
features on very small scales at late times. An example of
this occurs in the Warm Dark Matter simulations of Bode,
Ostriker & Turok (2001), where the population of ‘secondary
objects’ which they find to form by fragmentation of sheets
and filaments may actually be a numerical artefact induced
by the grid. An alternative approach is the glass-like dis-
tribution that is obtained when a random distribution of
particles is evolved with the signs of the N-body accelera-
tions reversed (White 1993; Baugh, Gaztanaga & Efstathiou
1995). The resultant particle distribution displays no regu-
lar pattern, but is sub-random. By construction, the glass

initial conditions are non-evolving in the absence of pertur-
bations. The glass load was generated once, but can be used
in many different simulations by adding in the appropri-
ate displacement field. This was generated from the initial
density field using the approximation of Zel’dovich (1970).
The Fourier modes of the density field were a Gaussian re-
alization, with random phases and amplitudes chosen from
a Rayleigh distribution.

For both the grid and glass methods, particle discrete-
ness on the smallest scales leads to a spectrum that is com-
parable to that of the shot-noise distribution on that scale.
Numerical evolution should proceed until the scales of in-
terest are well above this noise. For most spectra, memory
of the initial small-scale discreteness is only truly lost after
expansion by roughly a factor of 10 (see Section 4.2).

3.1 Self-similar simulations

The normalization of the scale-free power spectra is most
simply specified in terms of the power on the box scale at
the epoch when the expansion factor a is unity,

∆2
L(k) = ∆2(kb)

(

k

kb

)n+3

(23)

where kb = 2π/L. The benefit of normalizing the spectrum
in this way is that the box-scale power is directly related to
the error induced through omitting modes with wavelength
above L, and so the effects can be monitored (see Section
3.3).

Table 1 displays all relevant simulation parameters
for the scale-free runs. A large degree of nonlinearity was
achieved for all of the simulations and the n = −1 and −1.5
calculations were completed to the specified level of normal-
ization. The n = 0 calculations were halted after the cube
had expanded by roughly a factor of 25, due to the intense
demands on the cpu time from performing the PP part of
the calculation. Also, the n = −2 calculations were halted
after a similar factor of growth; this was due to the problems
of finite volume effects, which we discuss in detail in Section
3.3.

Figs 1 and 2 provide a visual account of the growth of
structure in the four models. We show three epochs from the
four different models: the initial conditions; an intermediate
epoch; the final output epoch. The n = −2 simulations dis-
play a number of large-scale fluctuations which collapse to
form large filaments and groups, whereas the n = 0 simula-
tions are characterized by a large number of tightly bound
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6 Smith et al.

Figure 1. Slices showing the growth of structure in the glass n = −2 simulation (left column) and ‘grid-start’ n = −1.5 simulation (right
column). All of the slices are of thickness L/10. From the n = −2 simulation we show expansion factors a = 0.2, 0.45 and 0.55, and from
the n = −1.5 simulation we show epochs a = 0.25, 0.63 and 1.0. The normalization of the final states in the n = −2 and n = −1.5 runs
were ∆2(2π/L, a = 1.0) = 0.133 and 0.046, respectively.

c© 0000 RAS, MNRAS 000, 000–000



Stable clustering, the halo model and nonlinear cosmological power spectra 7

Figure 2. Same as Fig. 1, but this time showing the comoving projection of particles in the glass n = −1 simulation (left column) and
glass n = 0 simulation (right column). From the n = −1.0 simulation we show epochs a = 0.25, 0.63 and 0.83, and from the n = 0
simulation we show expansion factors a = 0.1, 0.3 and 0.5. The normalization of the final states in the n = −1 and n = 0 runs were
∆2(2π/L, a = 1.0) = 0.017 and 0.003, respectively.

c© 0000 RAS, MNRAS 000, 000–000
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Table 2. Parameters of the 2563 particle, power-law Λ and open simulations. Epochs include a = 0.025, 0.05, 0.1, 0.2, 0.25, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, 1.0

simulation ǫ/L ∆2(kb) Ω Λ ainitial afinal timesteps energy error

n = −2 0.00025 0.0479 0.26 0.74 0.025 1.0 1065 0.05 %
n = −2 0.00025 0.0479 0.2 0.0 0.025 1.0 965 0.09 %
n = −1.5 0.00025 0.0240 0.26 0.74 0.025 1.0 971 0.13 %
n = −1.5 0.00025 0.0240 0.2 0.0 0.025 1.0 965 0.13 %
n = −1 0.00025 0.0101 0.26 0.74 0.025 1.0 1342 0.28 %
n = −1 0.00025 0.0101 0.2 0.0 0.025 1.0 965 0.87 %
n = 0 0.00025 0.0003 0.26 0.74 0.025 1.0 1020 0.86 %
n = 0 0.00025 0.0003 0.2 0.0 0.025 1.0 967 1.86 %

objects and a paucity of large-scale filamentary features, in
accordance with the results of Efstathiou et al. (1988). Fig.
1 also compares the glass start to the grid starts. In the glass
start no features other than the prescribed fluctuations are
observed, whereas the grid start shows faint lattice patterns
which are still observable in the voids at the final epoch.

3.2 Power-law open and flat simulations

At late times the amplitude of the nonlinear power spectrum
is very sensitive to the density of the universe, and strongly
modulates the amplitude of the nonlinear clustering signal.
This effect is important to quantify if one wishes to con-
struct general models for evolving nonlinear power spectra.
We investigated this density dependence by performing a
further series of high resolution, 2563 particle, simulations
for open universes where Ω = 0.2 at the final epoch and
for flat universes where Ω = 0.26 and Λ = 0.74 at the final
epoch. The values for the density parameter were selected
so that each full integration would span a large dynamic
range in Ω. The amplitude of the final box-scale mode was
set slightly lower than in the Ω = 1 simulations, because
of the greater small-scale nonlinearities that are generated
in low-density models. For all of these simulations we have
used the glass initial particle load. Table 2 displays all of the
relevant simulation parameters.

3.3 The challenge of n → −3

On small scales, the slope of the CDM power spectrum ap-
proaches n ≃ −3, so it is important to understand how such
spectra evolve in the nonlinear regime. However, highly neg-
ative spectral indices have proven difficult to simulate (Efs-
tathiou et al. 1988; Jain, Mo & White 1995; PD96; Jain &
Bertschinger 1998), and this can be attributed to two main
effects.

First, the number of particles must be high enough to
simulate virialized clusters convincingly. Second, the finite
size of the simulation volume means that the longest wave-
length fluctuations that are present are λb = L ; kb = 2π/L.
The absence of modes beyond the box scale induces an error
in the nonlinear spectrum, since nonlinearity couples Fourier
modes together and power leaks from large to small scales;
the importance of this effect increases for increasingly neg-
ative spectral indices and dominates as n approaches −3.

The error in the power spectrum due to these missing

modes can be estimated from the linear power spectrum. We
can quantify the missing variance as follows:

σ2
miss =

∫

∞

0

∆2
L(k)

dk

k
−

∑ 1

4π

∆2
L(k′)

(ℓ2 + m2 + n2)3/2
, (24)

where the sum is over all integer triples (ℓ,m, n) except
(0, 0, 0) and the wavenumber k′ = kb(ℓ2 + m2 + n2)1/2.
Strictly speaking, both terms on the rhs are divergent for
power-law spectra with n ≥ −3. Nonetheless, if one imposes
a sufficiently smooth cut-off at kcut in the power spectrum,
then the difference is well defined in the limit of kcut → ∞.

We have estimated σ2
miss numerically in this way for

scale-free power spectra as a function of n. To about 1%
accuracy the result is given by:

σ2
miss =

∆2
L(kb)

3 + n
F (3 + n), (25)

where F (y) = 1−0.31y+0.015y2+0.00133y3 and this expres-
sion is valid for −3 ≤ n ≤ 1. One can check the numerical
result, not only by confirming it is insensitive to the precise
value of kcut, but also for the special case n = 0 where it is
easy to see from geometric considerations that the value of
F (3) is 3/4π. In the limit of n → −3 the missing variance is
well approximated by the quantity σ2

err defined as:

σ2
err =

∆2
L(kb)

3 + n
. (26)

So as to ensure that the missing variance does not become
significant for our simulations, we have chosen to adopt the
criterion

σ2
err ≤ 0.04 , (27)

for which the large-scale missing modes are safely linear.
It is for these reasons that the relatively low resolution

(compared to modern standards) 323 particle, n = −2 simu-
lation of Efstathiou et al. (1988) could only reproduce the ex-
act similarity solution for the power spectrum over a narrow
range of expansion. Also, for the more recent high-resolution
2563 particle, n = −2 simulation of Jain & Bertschinger
(1998), the box-scale power for their last three outputs vi-
olates the condition (27), rising to σ2

err ≃ 0.4 for the last
epoch.

3.4 Simulation error and Layzer–Irvine energy

A test for the global accuracy of the integration of the equa-
tions of motion is to measure how well the Layzer–Irvine
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energy equation (Peebles 1980, equation 24.7) is obeyed (Ef-
stathiou et al. 1985). One way to characterize this is through
the change in the Layzer–Irvine integral, I , divided by the
total potential energy W (Couchman et al 1995):

I = K + W +

∫

[2K + W ]
da

a
, (28)

where K is the total kinetic energy. In Tables 1 and 2 we
present the percentage error in each of the simulations. The
accuracy of the integration decreases as the spectral index
steepens and as Ω decreases, the least accurate integration
being that of the open n = 0 simulation, for which the global
error at the final epoch was of the order 1.8%.

4 MEASURING THE POWER SPECTRUM

The Fourier modes of the particle distribution can be deter-
mined exactly using the expression (Peebles 1980)

δk =
1

N

N
∑

i=1

eik·xi . (29)

Owing to the periodic boundary conditions, wavenumbers
are restricted to be integer multiples of the fundamental
mode, with an upper limit imposed by the finite sampling
of the mesh: the Nyquist frequency,

kNy =
π

∆x
, (30)

where ∆x = L/Nm is the mesh spacing and Nm is the dimen-
sion of the mesh. The power spectrum can then be estimated
through averaging over all of the modes in a thin shell in k
space:

P̂ (k) ≡
〈

|δk|
2
〉

=
1

m

m
∑

i=1

|δki
|2 . (31)

where m is the number of modes to be averaged. This
method is computationally inefficient, with the required cpu
time scaling as MN for M modes. A faster method is to
distribute particles onto a cubical mesh and perform a Fast
Fourier Transform (FFT). However, the assignment of mass
to grid cells introduces some systematic effects which must
be corrected; these issues will be discussed in detail in Sec-
tion 4.2.

In the case of a 3D particle distribution, the task soon
becomes memory limited, a 5123 FFT requiring roughly
0.5 Gbyte for a ‘real-real’ transform and 1 Gbyte for a
‘complex-complex’ transform. A solution to this problem
was proposed by J98; we now detail this method, since it
is critical for the present paper.

4.1 Chaining the power

Consider a 1D discrete density field δ(x), which is periodic
over a length scale L and which has a discrete Fourier trans-
form given by equation (29). If we partition the density field
using a coarse mesh with M grid cells, then the density at
the point x can be described by the relation

δ(x) = δ
(

x′ + jL/M
)

, (32)

where x′ is the position of the particle in its grid cell and j
labels the cell. If we now map all of the grid cells into one
cell, then the reduced density field, which is now periodic on
the scale L/M , is

δr(x′) =

M−1
∑

j=0

δ(x′ + jL/M) . (33)

The discrete Fourier transform of this reduced density field
is then,

δr
k =

1

N

N
∑

i=1

exp(ikx′

i) =
1

N

N
∑

i=1

exp[ik(xi − jL/M)] . (34)

Provided that the k-modes are integer multiples of the new
fundamental mode, k = ℓ2π/(L/M), then the last term in
the exponential is a multiple of 2π, so the modes of the
reduced field are equivalent to the modes of the true field.
There is, however, a reduction in the number of available
modes, since the smaller volume of the coarse mesh gives a
lower density of states.

4.2 Numerical effects on the power

There are three important numerical effects which can mod-
ify the ‘observed’ power spectrum from the true nonlinear
signal: discreteness effects, charge assignment and force soft-
ening.

4.2.1 Discreteness effects

For a random distribution of particles with no imposed clus-
tering, the power does not vanish. This result can be deduced
by splitting 3D space into a large number of cubical cells, so
that the occupation number of each cell is either ni = 0 or 1
(Peebles 1980). On computing the expectation of the power
spectrum, we obtain the shot-noise spectrum

〈

|δk|
2
〉

=
1

N
(35)

which in dimensionless form is written

∆2
shot =

4π

N

[

k

kb

]3

. (36)

This leads us to write the true power spectrum, in the limit
of large N (Peacock & Nicholson 1991)

∆2
true(k) = ∆2

obs(k) − ∆2
shot, (37)

where ∆2
obs is the observed power from equation (31).

However, this correction is invalid for the glass and grid
starts discussed in section 3. To determine the appropriate
correction for these schemes we directly computed the power
spectrum of the initial conditions and then used these empir-
ical spectra to construct a simple correction model. In Fig. 3
(bottom) we show the raw power spectrum of the glass parti-
cle load for the initial conditions and two subsequent epochs
from the n = −2 simulation. The glass power spectrum is
characterized by a two-power-law spectrum: on intermedi-
ate scales the spectrum is steep, roughly the n = 4 ‘minimal
slope’ (see section 28 of Peebles 1980) and at smaller scales
this breaks to a shot noise spectrum. Furthermore, the bot-
tom panel of Fig. 3 shows that the discreteness spectrum
does not appear to evolve; we can therefore use the initial
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Figure 3. (Top) The glass-discreteness corrected (squares) and
uncorrected power spectrum (stars) of the glass n = −2 simula-
tion at an epoch a = 0.55. We show the linear fluctuation spec-
trum (dashed line), which demonstrates that the box scale mode
is still linear, the nonlinear spectrum according to the scaling
formula of PD96 (thin solid line), a shot noise spectrum (dot-
dashed line) and our two power-law discreteness model outlined
in the text (thick solid line). (Bottom) Three epochs from the
early stages of the same n = −2 simulation. From bottom to top
epochs are a = 0.025 (squares), 0.1 (circles) and 0.3 (stars). This
demonstrates that the discreteness spectrum does not evolve and
also that the linear spectrum has been correctly established early
on. Again, the lines are as in the top panel, with the thick solid
line representing our fit to the discreteness spectrum.

conditions to determine a discreteness correction that can
be applied to correct the observed power at all subsequent
epochs. This correction can be modelled as a transition be-
tween shot noise on small scales and the almost minimal
spectrum on intermediate scales:

∆2
glass =

[

(

∆2
shot

)

−1/α
+

(

∆2
min

)

−1/α
]

−α

, (38)

where α = 0.3 and ∆2
min = (Ak/kb)β , with best fitting

values A = 0.0062 and β = 6.8.
For the grid, or ‘quiet’ start, the issue of a discreteness

correction is fairly subtle, since there is initially no power

added to the distribution by particle placement except on
the scales of the Nyquist frequency of the mesh. However,
as the simulation evolves under gravity, the sparseness of
particles on small scales forms a power spectrum similar to
a shot noise term on those scales. At late times this can
be remedied by subtracting the Poisson spectrum from the
raw power, since the large- and intermediate-scale modes in
the evolved distribution are of higher amplitude than the
shot-noise spectrum. At early times, when the true power is
of relatively low amplitude, this approach is incorrect. We
avoid the problem by excluding points whose amplitudes are
below the Poisson spectrum on the equivalent scale.

Fig. 4 (top) compares the uncorrected power spectra
for the glass and grid starts measured from the n = −2
simulations at two epochs a = 0.4 and a = 0.55. We observe
that the nonlinear loci defined by the data for these two
simulations are consistent and show no memory of the initial
particle load. The only noticeable discrepancy between the
two simulations is the difference in large-scale power; this
arises because the simulations are independent realizations.
Fig. 4 (bottom) contrasts the discreteness-corrected spectra;
this shows that consistent final results are obtained through
simulating with grid or glass initial conditions.

4.2.2 Mass assignment

The assignment of mass onto the FFT mesh produces a fi-
nite sampling error of the true density field. This problem
was investigated for power spectra by Baugh & Efstathiou
(1994), who proposed that equation (37) for the true field
should be modified to

∆2
true(k) =

∆2
obs(k) − ∆2

disc(k)

w(y)
; y = k/km , (39)

where w(y) is the Fourier transform of the mass assignment
window function, ∆2

disc(k) is the appropriate discreteness
correction and km = 2π/∆x is the wave number associated
with the inter-mesh spacing ∆x. However, we believe that
there is a small flaw in their method. Any discreteness cor-
rection should be made subsequent to the correction due to
mass assignment, since the discreteness correction accounts
for the representation of a continuous field with a point-like
distribution. We therefore implement the correction as

∆2
true(k) =

∆2
obs(k)

w(y)
− ∆2

disc(k) ; y = k/km, . (40)

Several schemes exist for transferring mass onto the
Fourier mesh. The simplest scheme is nearest grid point
(NGP), which assigns all of the mass to the closest mesh
point. More sophisticated methods such as cloud-in-cell
(CIC) and triangular-shaped-cloud (TSC) attempt to smear
the mass across a number of mesh points. We have adopted
the TSC scheme to assign particles to the mesh. How-
ever, the detailed correction is unimportant when using the
chained-power method of J98. Results at high k can be ob-
tained either by making substantial binning corrections to
the main FFT mesh, or by moving to a sub-mesh of higher
resolution. In practice, we make this transition before the
corrections from binning become significant. Finally, Baugh
& Efstathiou showed that, even after correcting for the win-
dow function, the power is affected by aliasing close to the
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Figure 4. (Top) Comparison of discreteness uncorrected power
spectra measured from the quiet start (squares) and glass start
(stars) n = −2 simulations at epochs a = 0.4 and 0.55. Line styles
are as in Fig. 3. (Bottom) Comparison of discreteness corrected
power spectra for the same outputs from the two simulations.

Nyquist frequency. Again, when following the method de-
scribed in Section 4.1, aliasing errors can be avoided by only
using modes that are a safe distance from the Nyquist fre-
quency of a given (sub)mesh (a factor of 2, in practice).

4.2.3 Force softening

The softening of the Newtonian force in the PP part of the
N-body calculation (described in Section 3) induces an error
in the integration of particle trajectories for close pairs. By
considering the fractional error in the softened force from the
true Newtonian force, we can impose some constraints on the
small-scale cutoff, below which numerical effects dominate
the clustering in our simulations. For our spline-kernel force
softening, we expect numerical effects to suppress the true
power on scales of a few times the softening length. This
corresponds to k/kb ∼ 1700.

The simplest way to discriminate between the true non-
linear solution and numerical artefacts is to use the self-
similar evolution of the scale-free simulations. Since the nu-

Figure 5. Nonlinear power plotted against linear power (points)
for the four scale-free simulations. For clarity, the data have been
separated from each other by one order of magnitude in the y-
direction, with the n = 0 data untranslated. To determine the
linear power given a nonlinear data point, the appropriate lin-
ear scale is required. In the HKLM method, this is found using
the transformation kL = [1 + ∆2

NL(kNL)]−1/3kNL. The solid line
represents the fitting formula for the Einstein–de Sitter models
presented in Appendix B; the dashed line represents the PD96
fitting formula; the dotted lines are the fits using the formula of
JMW95.

merical features are of fixed comoving length, the true den-
sity field will scale under the transformations that were de-
scribed in Section (2.4), whereas the numerical effects do
not. We provide evidence for this in section 5.

5 NUMERICAL RESULTS

5.1 Similarity solution

Fig. 5 shows the data for the four scale-free models in the
HKLM form: nonlinear power on the nonlinear scale plotted
as a function of the linear power on the linear scale. For
clarity, the data have been separated from each other by
one order of magnitude in the y-direction, with the n = 0
data untranslated. In order to determine the linear scale and
power that correspond to a given nonlinear data point, we
use the nonlinear scaling relation (13). Explicitly, given a
nonlinear data point kiNL, ∆2

iNL, its linear counterpart is

kiL = (1 + ∆2
iNL)−1/3kiNL ; ∆2

iL =
(

kiL

k0

)3+n

, (41)

where k0 is a time-dependent normalization wavenumber de-
fined by ∆2(k0) ≡ 1 and we have assumed an initial power-
law power spectrum for this example.
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Figure 6. Nonlinear slope of the power spectrum versus spectral
index. Points are measured from the scale-free simulation power
spectra. The solid line represents the stable-clustering prediction.
The dot-dash lines correspond to the predictions of the halo model
(Ma & Fry 2000b), with an assumed ǫ = 0.4 and 0.0 ≤ β0 ≤ 1.0.
The dotted lines correspond to the halo model prediction with
β0 = 0.25 and 0.4 ≤ ǫ ≤ 1.0.

When plotted in this form the scaling nature of these
models is apparent. The power spectra measured from mul-
tiple epochs of the simulations precisely overlay to define a
single locus for each of the spectral models considered. We
confirm the observation of JMW95 and PD96 that differ-
ent spectral models produce different amounts of nonlinear
growth and that the more negative the spectral index the
steeper the locus in this plane. Fig. 5 also shows that the
n = −2 simulations have produced a single, tightly defined
locus. This was not observed in previous studies (see Fig. 1 of
Jain 1997, Fig. 1 of PD96 and Fig. 7 of Jain & Bertschinger
1998). This failure of scaling in earlier n = −2 results was
probably attributable to saturation of the box-scale mode.

The evolution in the data can be roughly broken down
into three regimes, the linear, the quasi-linear and the non-
linear. General observations made about these regimes are:

(1) Linear: ∆2
NL < 1: the ‘nonlinear’ power for all of the

models converges to the linear power.
(2) Quasi-linear: 2 < ∆2

Q < 30: the slope of the fNL curves
are steep. Modelling the data in this regime with a single
power-law of the form, ∆2

Q ∝
[

∆2
L

]α
, we find for n = −2,

−1.5, −1 and 0, that the spectral slopes are α = 3.62±0.03,
3.38±0.05, 3.12±0.06 and 2.96±0.1. This is reasonably close
to the suggestion of Padmanabhan (1996) that ∆2

Q ∝ [∆2
L]3,

although there is a clear trend with n that is not expected
in Padmanabhan’s argument. This departure from a simple
scaling relation is also supported by the results from loop-
correction perturbation theory (see Fig. 19 of Scoccimarro
& Frieman 1996). However, it may be argued that extended
perturbation theory will fail at such large nonlinearities. One
caveat is that it has been suggested that the nonlinear scal-
ing relation may only truly be valid for ξ̄ (Kanekar & Pad-
manabhan 2001) and not ∆2. The small scatter observed in
Fig. 5 leads us to believe that this might not be the case.

(3) Nonlinear: ∆2
NL > 30: the fNL curves break away

from the steep evolution which characterized the quasi-linear
growth to form loci that are much shallower. Again, we have
performed a simple power-law fit to the data of each locus.
We find that for ∆2

NL > 50 the n = −2 data have a nonlinear
slope α = 1.05 ± 0.09, and for ∆2

NL > 100 the n = −1.5, −1
and 0 data have nonlinear asymptotes of α = 0.87 ± 0.04,
α = 1.08 ± 0.04 and α = 0.99 ± 0.04. This result is interest-
ing for two reasons. Firstly, within the scatter in the simu-
lations there appears to be little dependence on the initial
spectrum for the nonlinear slope. Secondly, it is in clear con-
tradiction to stable clustering, which predicts that α = 3/2.
We note that this result agrees with the findings of Bagla,
Engineer & Padmanabhan (1998) for clustering in 2D. How-
ever, Fukushige & Suto (2001) found that the stability on
small scales, as measured from peculiar velocities, was not
preserved locally but did apply globally. Our results do not
agree with this.

The shallow slope at high k may be interpreted in terms
of the halo model. Ma & Fry (2000b) derived the following
asymptotic limit for the power spectrum:

∆2(k) ∝ kγ ; γ =
18β − ǫ(n + 3)

2(3β + 1)
, (42)

where β ≃ 0.8β0 is the power-law that governs the mass
dependence of halo concentrations: c = rv/rs = (M/M∗)β0 ;
rv and rs being the virial and characteristic radius; and ǫ
is the power-law index that governs the low-mass tail of the
mass function: dn/dM ∝ νǫ; ν ∝ 1/σ(M). Realistic values
for ǫ and β0 are 0.4 ≤ α ≤ 1.0 and 0.0 ≤ β0 ≤ 0.5. This is
illustrated in Fig. 6, which shows the nonlinear power spec-
tral index γ as a function of the initial spectral index n. The
values of γ were obtained from the above nonlinear scaling
relations, ∆2

NL ∝ [∆2
L]α, using the relationship (PD96)

∆2
NL ∝ kγ

NL; γ =
3α(n + 3)

3 + α(n + 3)
. (43)

We find γ = 0.77, 0.91, 1.26, 1.49 for spectral indices
n = −2, −1.5, −1.0, 0.0. Comparing these measured values
against the two predictions from equation (7) and (42), we
see that γ increases with the steepness of the spectrum, but
that the data fall below the stable clustering prediction. In
terms of the halo model, if one assumes ǫ = 0.4 in accord
with Sheth & Tormen (1999), then a strong dependence of
β0 on n is required in order to match the measured data.
On the other hand, if one adopts a value β0 = 0.25 in the
middle of the current measured values, then it is impossi-
ble to match the measured data with any value of ǫ in the
plausible range 0.4 to 1.0. In summary, equation (42) seems
unable to predict the observed trend of γ(n) in a natural
manner. This is puzzling, since we will show below that the
general ideas of the halo model work very well in describing
our data. One possibility is that equation (42) is valid only
on scales smaller than those probed by current simulations.

Also, in Fig. 5 we contrast our data with the fitting
formula of JMW95 and PD96 (see Appendix A1 and A2
for these formulae). Both models work reasonably well in
the quasi-linear regime, but with significant discrepancies.
The n = −2 results are poorly fit by both models, with
the power being in general underestimated; PD96 gives the
poorer fit, and underestimates the power by up to a factor 2.
The n = −1.5 locus is fairly well characterized by the JMW
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function, but underestimated by PD96. The n = −1 results
are fairly well fit by both models, except around the break
between linear and quasi-linear slopes, where the functions
overestimate the power. Finally, the n = 0 locus is slightly
overestimated at the linear to quasi-linear break by PD96
and underestimated by JMW95. We have produced a new
HKLM fitting formula that accurately fits the individual
Einstein–de Sitter models, the results of which are shown
in Fig. 5 as the thin solid line. The formula is described in
Appendix B.

5.2 Low-density power-law models

In Fig. 7 we show how the nonlinear behaviour of the power-
law models deviates from the scale-free solutions (solid lines)
as the background density is lowered. Again, for clarity, the
data have been separated from each other by one order of
magnitude in the y-direction, with the n = 0 data untrans-
lated. In the linear regime, we again find that the nonlin-
ear data follow the linear power. In the quasi-linear regime,
2 < ∆2

NL < 80, as Ω decreases, the locus defined by the
data increases in amplitude relative to the scale-free models
and the power-law slope steepens. This density-dependent
evolution of fNL in the quasi-linear regime was not appar-
ent in previous studies (see PD96). The quasi-linear slope
steepens as both n and Ω decrease. In the nonlinear regime,
∆2

NL > 80, we again observe that the slope of fNL is lower
than the 3/2 value that is required by stable clustering.

In Fig. 7, we also compare the data with the density
dependent fitting formula of PD96. Again, the formula un-
derestimates the shallow spectra and slightly overestimates
the steeper spectra. However, the more striking discrepancy
is that the formula suppresses the onset of density depen-
dent growth until evolution is far into the nonlinear regime,
and then tends to overestimate the highly nonlinear power.
These discrepancies can in fact be seen in the comparison
with the simulation data used by PD96. However, this li-
brary of small (N = 803) simulations was in most cases
unable to probe beyond ∆2

NL ≃ 200, and so the deviations
never became substantial.

The failure of the JMW95 and PD96 functions to ac-
curately model the Einstein–de Sitter data and account for
the density dependence of nonlinear growth has clearly been
shown. On attempting to fit this data set using the stan-
dard HKLM-PD96 procedure we were able to produce an
improved formula with an rms precision of 12%. However,
on attempting to integrate the CDM models into the for-
mulation, we could not find a satisfactory way to assign an
effective spectral index to the models. We therefore decided
to pursue an alternative approach to the problem of general
nonlinear fitting functions, which proved to be more accu-
rate.

6 THE HALO MODEL FITTING FUNCTION

In this Section, we attempt to describe the above nonlin-
ear results by means of concepts abstracted from the ‘halo
model’ (Peacock & Smith 2000; Seljak 2000; Ma & Fry
2000a). The basic approach suggested by the halo model is
to decompose the density field into a distribution of isolated
haloes. Correlations in the field then arise on large scales

Figure 7. (Top) HKLM plot for the open models. (Bottom)
HKLM plot for the flat low-density models with a cosmological
constant. Again, for clarity, the data have been separated from
each other by one order of magnitude in the y-direction, with
the n = 0 data untranslated. For each model five epochs are
shown, these are: a = 0.6, 0.7, 0.8, 0.9, 1.0, with the lowest locus
for each model corresponding to the a = 0.6 epoch. In terms of the
mass density parameter of the universe, these epochs correspond
to: Ω = 0.294, 0.263, 0.238, 0.217, 0.200 for the open models and
Ω = 0.619, 0.505, 0.407, 0.325, 0.260 for the Λ models. As in Fig.
5 the solid lines represent the fitting formula for the Einstein–de
Sitter models presented in Appendix B; the dashed lines represent
fits from the PD96 function.
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Figure 8. Comparison of the full halo-model calculation as de-
scribed in the text (thick solid lines) with the CDM data (points).
Also shown is the halo-model fitting formula from this work (thin
solid lines). For clarity the four CDM models have been separated
from each other by one order of magnitude in the y-direction, with
the τCDM data untranslated.

through the clustering of haloes with respect to each other
and on small scales through the clustering of dark matter
particles within the same halo. This then leads to a total
nonlinear power spectrum

PNL(k) = PQ(k) + PH(k), (44)

where PQ(k) is the quasi-linear term that represents the
power generated by the large-scale placement of haloes and
where PH(k) describes the power that results from the self-
correlation of haloes.

It is remarkable that such a simple decomposition ap-
pears to work well in describing the main characteristics of
the two-point correlations of the cosmological mass density.
It is maybe yet still more impressive when one considers that
the present formulation knows nothing of the large-scale fil-
amentary structure of the density field (which is governed
by the correlation function of halo centres). Indeed this de-
ficiency was recently pointed out and addressed by Scocci-
marro & Sheth (2002)

In Fig. 8 we directly compare the halo-model calcula-
tions (thick solid lines) with the CDM simulations of J98
(data points – see section 6.4 for full description). Also
shown is the halo-model fitting function that we present
later (thin solid lines – see Appendix C). The halo model
calculations are exactly those of Peacock & Smith (2000).
From the figure, it can clearly be seen that the calculations
qualitatively reproduce the data for all of the models, but

that in detail only match SCDM and τCDM closely. Fur-
thermore when one attempts to model the power-law spectra
the results are worse, with the n = 0 case being an extreme
example (see the later discussion). Thus our aim in what
follows will therefore be to produce a simple fitting formula
that draws on the broad elements of the halo model, such
as the above decomposition of the power spectrum into two
linearly summed terms, but which is of very high accuracy.

6.1 The quasi-linear term

Consider the quasi-linear part first. Seljak (2000), Ma &
Fry (2000a) and Scoccimarro et al. (2001) assumed that
one should use linear theory filtered by the effective window
corresponding to the distribution of halo masses, convolved
with their density profiles and a prescription for their bias
with respect to the underlying mass field:

PQ(k) = PL(k)

[

1

ρ̄

∫

dM b(M) n(M) ρ̃(k, M)

]2

, (45)

where n (M) dM is the mass function, ρ̃ (k, M) is the Fourier
transform of the density profile and b(M) is the bias field of
dark matter halo seeds. Peacock & Smith (2000) made the
simpler assumption that the quasilinear term corresponded
to pure linear theory:

PQ(k) = PL(k). (46)

This is equivalent to equation (45) on large scales, since in
this limit the filtering effect of haloes is negligible, and we
must have

1

ρ̄

∫

dM b(M) M n(M) = 1 . (47)

Neither of these approaches is really satisfactory, since
PH comes to dominate only at scales where linear theory
must break down to some extent (∆2

L ∼ 1). Quasi-linear
effects must modify the relative correlations of haloes away
from linear theory, irrespective of whatever allowance may
be made for the finite sizes of haloes. One way of seeing this
is via the scaling part of the HKLM procedure: see equations
(13). This shift of scales from gravitational collapse causes
a significant change in power at wavenumbers where ∆2

L is
of order unity – which is just the point where the filtering
effects of the largest haloes will also start to be important.
An alternative point of view is provided by perturbation
theory, which suggests that quasilinear effects should tend
to suppress power for n > −1.4, but enhance power for
more negative indices (e.g. section 4.2.2 of Bernardeau et
al. 2001). Again, such effects cannot be cleanly separated
from the convolving effects of halo profiles. We therefore
take an empirical approach, allowing the quasilinear effects
to depend on n. Since the philosophy of the halo model is
that ∆2

Q should be negligible on small scales, we also build
in a truncation at high k:

∆2
Q(k) = ∆2

L(k)

[

1 + ∆2
L(k)

]βn

1 + αn∆2
L(k)

exp−f(y); y ≡ k/kσ. (48)

where kσ is a nonlinear wavenumber, defined below in Sec-
tion 6.3 αn and βn are spectral dependent coefficients and
f(y) is the polynomial y/4 + y2/8 that governs the decay
rate. We adopt this expression for all spectra.
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6.2 The halo term

In the halo model the self-halo term is (Seljak 2000; Peacock
& Smith 2000; Ma & Fry 2000a; Scoccimarro et al. 2001)

PH(k) =
1

ρ̄2 (2π)3

∫

dM n(M) |ρ̃ (k, M)|2 . (49)

In order to model this we want something that looks like
a shot-noise spectrum on large scales, but is progressively
reduced on small scales by the filtering effects of halo profiles
and the mass function. In terms of the dimensionless power
spectrum, a candidate form for this is

∆2 ′

H (k) =
an y3

1 + bn y + cn y3−γn

; y ≡ k/kσ , (50)

where (an, bn, cn, γn) are dimensionless numbers that de-
pend on the spectrum. However, with PH defined in this
way, the formalism defined by equation (44) breaks down
for steep spectra. The self-halo power clearly dominates at
small k for any spectrum that is asymptotically n > 0 (e.g.
all CDM models). This has been independently noted by
Sheth & Cooray (2001). The halo model thus fails to re-
spect low-order perturbation theory in such cases, and this
is a clear defect of the model.

In order to solve this problem, the self-halo power must
become steeper than Poisson on the largest scales. This
makes sense if we think of the halo model as a two-stage
process: (i) fragment a uniform mass distribution into a set
of haloes; (ii) move these haloes according to a superimposed
large-scale displacement field. Since the first stage conserves
mass, the large-scale power spectrum must approach a ‘min-
imal’ form with n = 2 (e.g. section 28 of Peebles 1980). If one
conserves momentum also, the minimal spectrum becomes
even steeper: n = 4. It is a moot point which of these is the
appropriate asymptote for this problem, since the two-stage
view of the halo model is only a heuristic argument. Since
we will never wish to consider spectra that are asymptoti-
cally much steeper than n = 1, it will suffice to force the
n = 0 self-halo term to approach n = 2 on sufficiently large
scales. This can be achieved if equation (50) is modified as
follows

∆2
H(k) =

∆2 ′

H (k)

1 + µny−1 + νny−2
; y ≡ k/kσ (51)

where we have introduced a term in k4 in order to soften the
transition to the k5 slope. Again, the parameters µn and νn

are spectral dependent coefficients.

6.3 The nonlinear scale

In order to implement these arguments, we need an appro-
priate general definition of the nonlinear scale (see Section
2.4), which should be related to the characteristic mass in
the halo mass function. As studies over many years have
shown with increasing accuracy (Press & Schechter 1974;
Sheth & Tormen 1999; Jenkins et al. 2001), the halo mass
function appears to depend only on the dimensionless fluc-
tuation amplitude

ν ≡ δc/σ(R, t), (52)

where δc is a constant of order unity, usually identified with
the linear over-density for collapse in the spherical model

Table 3. The cosmological parameters of the N = 2563 CDM
simulations from J98. For these CDM models Γ ≡ Ωh is the shape
parameter of the spectrum, σ8 is the rms fluctuation in spheres
of 8 h−1 Mpc and h is the Hubble parameter

Model Γ σ8 Ω Λ h L/ h−1 Mpc

SCDM 0.50 0.51 1.0 0.0 0.5 239.5
SCDM 0.50 0.6 1.0 0.0 0.5 84.55
τCDM 0.21 0.51 1.0 0.0 0.5 239.5
τCDM 0.21 0.6 1.0 0.0 0.5 84.55
ΛCDM 0.21 0.90 0.3 0.7 0.7 239.5
ΛCDM 0.21 0.90 0.3 0.7 0.7 141.3
OCDM 0.21 0.85 0.3 0.0 0.7 239.5
OCDM 0.21 0.85 0.3 0.0 0.7 141.3

and R is the effective filter radius. The multiplicity function
for haloes, which is defined as the fraction of mass carried by
haloes with mass in a logarithmic interval, peaks for systems
where σ(R, t) is of order unity, and we can therefore choose
to define the nonlinear scale in this way:

σ(k−1
σ , t) ≡ 1 . (53)

This definition of scale depends on the functional form cho-
sen to filter the spectrum, but the main effects of changes in
this choice can be absorbed into the fitting coefficients. We
therefore take the convenient choice of a Gaussian filter:

σ2(RG, t) ≡

∫

∆2
L(k, t) exp(−k2R2

G) d ln k. (54)

With this choice of filter, scale-free spectra have

∆2
L(k, t) =

(

k

k0(t)

)3+n

⇒

kσ

k0(t)
=

(

[(1 + n)/2]!

2

)

−1/(3+n)

.

(55)

6.4 Application to CDM

We have generalized our formula to fit the Virgo and GIF
CDM simulations from J98, which comprise four models:
SCDM; τCDM; ΛCDM; OCDM. Table 3 lists the cosmo-
logical parameters for these models. The data are publicly
available from http://www.mpa-garching.mpg.de/Virgo/.
We have re-measured the power spectrum for the epochs
z = 0.0, 0.5 1.0 2.0 and 3.0 for both the Virgo and GIF data,
the results are presented in Figs. 14 and 15. The transfer
function for these simulations was that of Efstathiou, Bond
& White (1992):

∆2(k) =
Ak4

{1 + [aq + (bq)3/2 + (cq)2]ν}
2/ν

(56)

where q = k/Γ, a = 6.4 h−1 Mpc, b = 3 h−1 Mpc, c =
1.7 h−1 Mpc. The normalization constant A is chosen by fix-
ing σ8.

In order to model these more general curved spectra,
we define an effective spectral index via

3 + neff ≡ −
d ln σ2(R, t)

d ln R

∣

∣

∣

∣

σ=1

. (57)
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Figure 9. Variation of effective spectral index (top panel) and
curvature (bottom panel) as a function of the rms fluctuation in
Gaussian spheres of radius RG, for the four cosmological models
considered. Note the lower σ8 values that corresponded to the
big-box simulations has been assumed for the SCDM and τCDM
models.

Since the mass function should depend mainly on the Tay-
lor expansion of σ about the nonlinear scale, we also allow
dependence on the spectral curvature:

C ≡ −
d2 ln σ2(R, t)

d ln R2

∣

∣

∣

∣

σ=1

. (58)

For the case of a Gaussian filter these expressions have the
explicit forms,

3 + neff =
2

σ2

∫

d ln k ∆2
L(k, t) y2 exp

(

−y2
)

∣

∣

∣

∣

σ=1

(59)

and

C = (3 + neff)2 +
4

σ(R)2
×

Figure 10. Dependence of the nonlinear wave-number kσ (top
panel), effective spectral index neff (middle panel) and curvature
parameter C (bottom panel) on the shape parameter Γ and nor-
malization σ8 of the linear power spectrum. The parameters neff

and C are degenerate under Γ and σ8. This degeneracy is, how-
ever, broken by the nonlinear wavenumber.
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Table 4. The nonlinear wavenumber kσ in units of h Mpc−1, the
effective spectral index neff and curvature C of the spectrum on
the nonlinear scale, for the four CDM models listed in the text.

Model kσ neff C

SCDM 0.574 −1.455 0.411
τCDM 0.735 −1.850 0.305
ΛCDM 0.306 −1.550 0.384
OCDM 0.332 −1.581 0.375

∫

d ln k ∆2
L(k, t)

(

y2 − y4
)

exp
(

−y2
)

∣

∣

∣

∣

σ=1

, (60)

where y = kRG and where the explicit time dependence of
the power spectrum has been kept to indicate the redshift
dependence of the effective quantities. In Table 4 we list
the nonlinear wavenumber, effective spectral index and cur-
vature of the spectrum on the nonlinear scale for the four
Virgo (big-box) CDM models, generated according to the
above prescription.

Fig. 9 shows the variation of the effective spectral index
(top panel) and curvature (bottom panel) for the four Virgo
CDM models with the rms fluctuation measured in Gaussian
spheres of effective radius RG. The effective spectral index
is quite sensitive to whether it is defined at σ = 1 or at
some other value. However, including the curvature (which
depends much more weakly on σ), means that this uncer-
tainty is automatically allowed for. With the nonlinear scale
and effective spectral index and curvature as defined through
equations (53-58), we find that we can accurately model
CDM spectra. As expected, Fig. 9 shows that the OCDM
and ΛCDM models are almost indistinguishable: both pos-
sess nearly identical linear power spectra, with only a slight
difference in normalization. The τCDM model has the shal-
lowest effective spectral index, almost approaching n = −2
and the SCDM model has the steepest, with n = −1.4.
The power-law models that we have simulated encompass
this range of neff . Thus, we are confident that the new fit-
ting function will be constrained by the appropriate range
of spectral models, with the notable exception of the z > 3
τCDM data for which neff < −2. These models are the sole
basis for the fitting formulae in the n < −2 regime.

Fig. 10 shows the dependence of kσ (top panel), neff

(middle panel) and C (bottom panel) on the shape param-
eter and normalization of the linear power spectrum for
(0.1 ≤ Γ ≤ 0.8) and (0.4 ≤ σ8 ≤ 1.2). In all of the models
dark contrast represents a higher value. The parameters neff

and C are degenerate under Γ and σ8. This degeneracy is,
however, broken by including the nonlinear wavenumber.

6.5 Parameter optimization

We now give the best-fitting coefficients, including depen-
dence on cosmology. These coefficients were obtained by op-
timizing the formula to fit the scale-free and Ω < 1 power-
law simulations described here; the CDM simulations of J98;
and on large scales (k < 0.15 h Mpc−1), the results of 2nd-
order perturbation theory (calculated using the formulae of
 Lokas et al. 1996). Owing to the fact that numerical simula-
tions are susceptible to sample variance on large scales, ana-

Figure 11. (Top) nonlinear power ratioed to the linear power as
a function of wavenumber scaled in terms of the normalization
wavenumber k0: where ∆2(k0) = 1. The data points are for the
scale-free simulations; the solid lines represent the fits from the
new halo based formula in Section 6.5; the dotted lines are PD96
fits. (Bottom) The goodness of the new fit. The y axis represents
the ratio of observed nonlinear power to nonlinear power pre-
dicted by the halo based fitting function. The x axis is observed
nonlinear power.

lytic perturbation theory results were preferred. In the halo
model the cosmology dependence arises in a subtle way. To
the extent that the mass function depends only on ν (when
expressed as a function of R) and that δc has no strong
cosmology dependence, the mass function for a given spec-
trum is also independent of cosmology. Therefore, the only
effect on the halo power spectrum should be through the
sizes of haloes; these depend on cosmology because haloes
that collapse at high redshift are smaller. Collapse redshift
is a function of mass and cosmology (see e.g. Appendix C
of Peacock & Smith 2000). High-mass haloes always have
zc ≃ 0; these thus filter the large-scale part of the spec-
trum in a cosmology-independent way. Conversely, low-mass
haloes are important at high k, and these do depend on cos-
mology – which alters the effective scale at which filtering
occurs. However, there appears to be no simple way to im-
plement such a complicated dependence into the fitting pro-
cedure. We therefore insert empirical functions of Ω into the
procedure. Also, motivated by the findings of Section 5, we
allowed the power-law indices that govern the quasi-linear
regime to be density dependent.
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Figure 12. Top and bottom panels are similar to Fig. 11, but this
time points represent open model data. Five epochs are shown;
these are a = 0.6, 0.7, 0.8, 0.9, 1.0. In terms of Ω, these epochs cor-
respond to: Ω = 0.294, 0.263, 0.238, 0.217, 0.200. The thick solid
line represents the new halo-model based fitting to the scale-free
data.

The prescription that was found to work best is given
in Appendix C. Code to evaluate the fitting function can
be downloaded from the web address listed in the abstract.
Note that the above coefficients were obtained by fitting the
data over a restricted range of scales. The scale-free data
were constrained to have k/kσ > 0.3. The open and Λ data
were constrained to lie in the range: (4.0 < ∆2

L < 15.0) for
n = −2; (0.3 < ∆2

L < 15.0) for n = −1.5; (0.3 < ∆2
L < 20.0)

for n = −1; (0.3 < ∆2
L < 25.0) for n = 0. The CDM data

were fit under the constraints: k > 0.3 for the big box data
and to k > 0.5 h Mpc−1 for the higher resolution small box
calculations; the nonlinear power must be 10% greater than
the discreteness correction, equation (38). On larger scales
k < 0.15 h Mpc−1, the formula was calibrated to the results
of 2nd-order perturbation theory.

In Fig. 11 we compare our new halo-based fitting func-
tion with the scale-free simulations. The new model clearly
reproduces the data to a high degree of accuracy. Also, it
is important to note that when the data are plotted in this
way the scaling nature is again apparent and the departure
from stable clustering, which is indicated by the deviation
away from PD96 for k/k0 > 10, is pronounced.

In Figs 12 and 13 we compare the new halo based model
with the power-law data for Ω < 1 and Ω + Λ = 1. For

Figure 13. Top and bottom panels are similar to Fig. 11, but
this time points represent Λ model data. Four epochs are shown;
these are a = 0.7, 0.8, 0.9, 1.0. In terms of Ω, these epochs cor-
respond to: Ω = 0.505, 0.407, 0.325, 0.260. Again, the thick solid
line represents the fit to the scale-free data.

all of the models the inclusion of the functions f1, f2 and
f3, seems to well reproduce the observed density-dependent
growth. The only significant discrepancy is for the n = −2
open data, where the power is underpredicted in the quasi-
linear regime.

In Figs 14 and 15 we compare the model with the CDM
data. Again, the model does exceptionally well at repro-
ducing all of the data over the range of scales where we are
confident that numerical effects are unimportant. In particu-
lar, the OCDM and τCDM predictions are very significantly
improved using the new prescription.

Having demonstrated the success of the halo fitting
function on small scales, we next consider the large scales.
We assess this using the predictions derived from 2nd order
perturbation theory (see Baugh & Efstathiou 1994). Fig. 16
shows the ratio of nonlinear to linear power for four CDM
models. The current models match perturbation theory for
k < 0.1 h Mpc−1, but deviations exist at higher k. These
plausibly reflect a genuine breakdown of perturbation the-
ory, since the model was required to match perturbation
theory as well as possible for k < 0.15 h Mpc−1, and yet the
fit is breaking down slightly before this upper limit. Both
the halo fitting function and PD96 agree well in this range.

c© 0000 RAS, MNRAS 000, 000–000



Stable clustering, the halo model and nonlinear cosmological power spectra 19

Figure 14. Power spectra for the four Virgo CDM simulations (J98) in large cosmological volumes, L = 239.5h−1Mpc. Each panel
shows the evolution of structure with redshift. The data points correspond, from low to high, to epochs z = 0, 0.5, 1.0, 2.0 and 3.0. Note
that only those points with a measured power above the discreteness spectrum are plotted. The solid line represents the new halo-model
based fitting procedure, with dotted lines representing the decomposition into the self-halo and halo-halo terms; the dashed line is the
PD96 fit.

7 CONCLUSIONS AND DISCUSSION

In this paper we have presented a set of high-resolution, 2563

particle, scale-free N-body simulations, designed to investi-
gate self-similar gravitational clustering and in particular
the effects of nonlinear evolution. We have also performed a
further series of numerical simulations, with the same res-
olution, to explore how the evolution of clustering depends
upon the background density of the universe. Together, these
simulations represent the best calculations that exist to date
for the set of models explored, with a factor 512 improve-
ment in mass resolution over the ground-breaking work of
Efstathiou et al. (1988).

We verified that the final output power spectra were ro-
bust by considering grid and glass particle loads. However,
at early times the problem of discreteness correction is sim-
pler to handle if a glass start is applied; we have described

a detailed method for correcting the clustering signal in this
case. We have implemented the power spectrum estimation
technique of J98, which allowed us to probe high spatial
frequencies without aliasing effects or errors due to mass as-
signment to the Fourier mesh. The simulation results may
be summarized as follows:

(1) Scale-free simulations with 0 < n < −2 show self-
similarity under the scaling k0(a) ∝ a−2/(n+3). This conclu-
sion is in agreement with the results of Efstathiou (1988)
and Jain & Bertschinger (1998).

(2) In the quasi-linear regime, the power spectrum is
characterized by a steep power law. The exact slope depends
upon the spectral index n of the input spectrum and the
value of Ω, the slope steepening as n becomes more negative
and as Ω is reduced.

(3) The observed nonlinear asymptote of the Einstein–
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Figure 15. Same as for Fig. 14, but this time for the smaller box GIF simulations.

de Sitter simulations was found to be inconsistent with the
∆2

NL ∝ [∆2
L]3/2 prediction of stable clustering. A shallower

slope with ∆2
NL ∝ [∆2

L]1 is preferred. This result makes
sense in terms of the halo model: calculations using the ex-
tended Press-Schechter apparatus show that haloes will tend
to merge with systems of similar mass to their own (Lacey &
Cole 1993). Mergers of this kind will disrupt the virial equi-
librium of the system, violating the basic assumption that
underlies stable clustering. However, if this process were rare
then stable clustering could be upheld in a statistical sense.

(4) The nonlinear fitting formulae of PD96 and JMW95
failed to reproduce the n = −2 results and were only
marginally successful at reproducing the steeper spectra.
The low-density power-law data were poorly fit by PD96.

(5) For the Ω < 1 simulations, it is interesting to con-
sider how the nonlinear slope changes with density. In the
nonlinear limit equation (C4) (appendix C) becomes

∆2(k) ∝ k [3(f1−1)+γn] . (61)

For a given n, f1 increases as Ω decreases, and so the power-

law slope steepens. This result supports the idea that small
scale clustering is more closely related to the emergence of
the internal density structure through the continual accre-
tion and merger of haloes. The reasoning is as follows: for a
low-density universe mergers are less frequent and so haloes
have more time to virialize. This means that stable cluster-
ing may be considered to be a better approximation for these
systems. From the arguments in Section 1 and 5, this would
then be manifest as a steepening of the nonlinear slope.

In the second part of this paper, we proposed an im-
proved fitting function for mass power spectra to replace
the much-used PD96 formula. We have adopted a new ap-
proach to fitting power spectra, based upon a fusion of the
halo model and a HKLM scaling. The method was general-
ized to fit more realistic curved spectra, by introducing two
new parameters, neff the effective spectral index on the non-
linear scale, and the spectral curvature, C. We found that
the halo model as previously envisaged in the literature fails
to approach linear theory on large scales for n ≥ 0. We
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Figure 16. Comparison to perturbation theory. The top panel
shows the ratio of the evolved power to the linear power for two
CDM models with Γ = 0.2, but with different normalizations.
The model with σ8 = 1. has been translated by a factor of 0.5
in the y-direction. The points represent perturbation theory; the
thick solid line is this work; the dashed line represents PD96. The
bottom panel is the same as the top, but with Γ = 0.5.

have argued that this should be cured by changing the self-
halo power from n = 0 to n = 2 on large enough scales,
and we have shown empirically that this approach allows
an accurate description of a very wide range of power spec-
trum data. Our new fitting formula reproduced the scale-
free power spectrum data and also the CDM results of J98
with an rms error better than 7%. This is to be preferred to
the widely-used PD96 prescription, and should be useful for
a variety of cosmological investigations. In particular, our
preliminary investigations show that the present formalism
should cope naturally with spectra containing a realistic de-
gree of baryonic features (e.g. Meiksin, White & Peacock
1999).

The halo model provides a novel way to view structure
formation, and has yielded useful insights into the origin of

nonlinear aspects of galaxy clustering. This work has con-
centrated on the low-order statistics of the density field, but
it is also possible to consider higher-order statistics such as
the bispectrum. This three-point function in Fourier space
probes the shapes of large-scale structures that are gener-
ated by gravitational clustering. No shape information is
included in the current formalism, so it will be interest-
ing to see how well the model can account for higher-order
statistics. Initial results in this direction (Scoccimarro et al.
2001) seem to be promising. In general, the important ques-
tion is the extent to which the halo model can encapsu-
late the phase information in the density field, since fields
with identical power spectra can possess completely differ-
ent real-space distributions (e.g. Chiang & Coles 2000). The
halo model will inevitably fail to encompass these details of
the density field in full, although it may still offer useful in-
sights. However, at the two-point level, we have shown that
the model is far more than an educational device, and it
can be used as a tool for a high-precision description of the
evolution of the dark-matter power spectrum.
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APPENDIX A: HKLM FITTING FUNCTIONS

A1 The JMW95 function

The JMW95 function was designed to model the n-
dependence of the nonlinear evolution of scale-free power
spectra. The formula was also used to model Ω = 1, CDM-
like models through the adoption of an effective spectral
index; see equation (14). JMW’s formula described their nu-
merical data with an rms accuracy of 15-20%, but for our
higher resolution scale-free data the fit is much worse, hav-
ing an rms error of 56%. Their formula is

∆2
NL(kNL)

B(n)
= fJMW

[

∆2
L(kL)

B(n)

]

, (A1)

where B(n) is a constant which depends upon the spectral
index n and where fJMW(y) remains independent of n. The
explicit forms are:

B(n) =
(

3 + n

3

)1.3

(A2)

and

fJMW(y) = y

[

1 + 0.6y + y2 − 0.2y3 − 1.5y3.5 + y4

1 + 0.0037y3

]0.5

(A3)

where y ≡ ∆2
L(kL)/B(n) .

A2 The PD96 function

PD96 performed a similar study to JMW95, but extended
the set of cosmological models to include Ω < 1 open and
flat universes. They also improved on JMW95 by including
CDM data in the optimization procedure and by proposing
that the effective spectral index would vary continuously
with scale: equation (15). They reported that their fitting
formula described their simulation data to an accuracy of
about 14%, but it describes our complete data set with an
rms error of 54%. The PD96 fitting formula is

fPD(y) = y

[

1 + Bβy + [Ay]αβ

1 + ([Ay]αg3(Ω, Λ)/[V y1/2])β

]1/β

, (A4)

where y ≡ ∆2
L(kL). B describes a second order deviation

from linear growth; A and α parameterize the power law
that dominates the function in the quasi-linear regime; V
is the virialization parameter that gives the amplitude of
the fNL ∝ y3/2 asymptote; β softens the transition between
these regions; g(Ω) is the density dependent growth factor
of (Carroll, Press & Turner 1992), which is the ratio of the
linear growth factor to the expansion factor. This has the
functional form

g(Ω) =
D(a)

a

=
5

2
Ω

[

Ω4/7 − Λ + (1 + Ω/2)(1 + Λ/70)
]−1

.

(A5)

The best-fitting parameters were

A = 0.482 (1 + n/3)−0.947

B = 0.226 (1 + n/3)−1.778

α = 3.310 (1 + n/3)−0.244

β = 0.862 (1 + n/3)−0.287

V = 11.55 (1 + n/3)−0.423 . (A6)
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APPENDIX B: NEW HKLM FITS TO THE

PRESENT DATA

We have performed a nonlinear least squares fitting to the
individual scale-free loci (see Fig. 5) using a single formula.
The individual fitting functions are accurate to ≃ 9%. The
formula is

fEdS(y) = y

[

1 + y/a + (y/b)2 + (y/c)α−1

1 + (y/d)(α−β)γ

]1/γ

, (B1)

where y ≡ ∆2
L(kL) and the relevant parameters for each n

are presented below

n a b c d α β γ
−2 3.138 0.358 0.527 0.940 8.247 0.508 0.330
−1.5 2.710 0.710 0.919 1.852 0.707 0.647 0.332
−1 10.37 1.115 1.403 2.873 6.655 0.697 0.366
0 29.26 1.394 1.941 3.753 6.547 0.847 0.351

APPENDIX C: THE HALO MODEL FITTING

FUNCTION

The halo model decomposes the power into a sum of two
contributions:

∆2
NL(k) = ∆2

Q(k) + ∆2
H(k). (C1)

These are given separately by

∆2
Q(k) = ∆2

L(k)

[

(1 + ∆2
L(k))βn

1 + αn∆2
L(k)

]

exp [−f(y)]; (C2)

where y ≡ k/kσ and f(y) = y/4 + y2/8; and

∆2
H(k) =

∆2 ′

H (k)

1 + µny−1 + νny−2
, (C3)

where

∆2 ′

H (k) =
an y3f1(Ω)

1 + bnyf2(Ω) + [cnf3(Ω) y]3−γn
(C4)

and y ≡ k/kσ.
The parameters of the spectrum are defined via Gaus-

sian filtering:

σ2(RG) ≡

∫

∆2
L(k) exp(−k2R2

G) d ln k. (C5)

In these terms,

σ(k−1
σ ) ≡ 1. (C6)

The effective index is

3 + neff ≡ −
d ln σ2(R)

d ln R

∣

∣

∣

∣

σ=1

, (C7)

and the spectral curvature is

C ≡ −
d2 ln σ2(R)

d ln R2

∣

∣

∣

∣

σ=1

. (C8)

Allowing (an, bn, cn, γn, αn, βn, µn, νn) to vary as a function
of spectral properties, the following coefficients fit our sim-
ulation data and the CDM simulations of J98 to an rms
precision of 8.6% (very much better than PD96). In partic-
ular, the model describes the ΛCDM data of J98 extremely
well. For redshifts z < 3, the deviation in power between

model and the average of the large-box and small-box data
from J98 is always less than 3% for k < 10 h Mpc−1. This
represents a perfect fit with present knowledge, since the two
datasets themselves can differ by at least this much. Note
the use of terms up to n4 in the fit for an; these are required
in order to describe the rapid rise in amplitude of the halo
term for n < −2. For less negative n, the higher-order terms
are unimportant. The coefficients are:

log10 an = 1.4861 + 1.8369 n + 1.6762 n2 + 0.7940 n3

+0.1670 n4 − 0.6206 C ; (C9)

log10 bn = 0.9463 + 0.9466 n + 0.3084 n2 − 0.9400 C ; (C10)

log10 cn = −0.2807+0.6669 n+0.3214 n2 −0.0793 C ;(C11)

γn = 0.8649 + 0.2989 n + 0.1631 C ; (C12)

αn = 1.3884 + 0.3700 n − 0.1452 n2 ; (C13)

βn = 0.8291 + 0.9854 n + 0.3401 n2 ; (C14)

log10 µn = −3.5442 + 0.1908 n ; (C15)

log10 νn = 0.9589 + 1.2857 n ; (C16)

and the Ω dependent functions are:

f1a(Ω) = Ω −0.0732

f2a(Ω) = Ω −0.1423

f3a(Ω) = Ω 0.0725

}

Ω ≤ 1 (C17)

f1b(Ω) = Ω −0.0307

f2b(Ω) = Ω −0.0585

f3b(Ω) = Ω 0.0743

}

Ω + Λ = 1 (C18)

For models in which Λ is neither zero nor 1−Ω, we suggest
interpolating the functions f1 etc. linearly in Λ between the
open and flat cases.
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